High-Dimensional Entropy Estimation for Finite Accuracy Data: R-NN Entropy Estimator
نویسنده
چکیده
We address the problem of entropy estimation for high-dimensional finite-accuracy data. Our main application is evaluating high-order mutual information image similarity criteria for multimodal image registration. The basis of our method is an estimator based on k-th nearest neighbor (NN) distances, modified so that only distances greater than some constant R are evaluated. This modification requires a correction which is found numerically in a preprocessing step using quadratic programming. We compare experimentally our new method with k-NN and histogram estimators on synthetic data as well as for evaluation of mutual information for image similarity.
منابع مشابه
Improvement of the k-nn Entropy Estimator with Applications in Systems Biology
In this paper, we investigate efficient estimation of differential entropy for multivariate random variables. We propose bias correction for the nearest neighbor estimator, which yields more accurate results in higher dimensions. In order to demonstrate the accuracy of the improvement, we calculated the corrected estimator for several families of random variables. For multivariate distributions...
متن کاملAnalysis of k-Nearest Neighbor Distances with Application to Entropy Estimation
Estimating entropy and mutual information consistently is important for many machine learning applications. The Kozachenko-Leonenko (KL) estimator (Kozachenko & Leonenko, 1987) is a widely used nonparametric estimator for the entropy of multivariate continuous random variables, as well as the basis of the mutual information estimator of Kraskov et al. (2004), perhaps the most widely used estima...
متن کاملWEIGHTED k-NN GRAPHS FOR RÉNYI ENTROPY ESTIMATION IN HIGH DIMENSIONS
Rényi entropy is an information-theoretic measure of randomness which is fundamental to several applications. Several estimators of Rényi entropy based on k-nearest neighbor (kNN) based distances have been proposed in literature. For d-dimensional densities f , the variance of these Rényi entropy estimators of f decay as O(M), whereM is the sample size drawn from f . On the other hand, the bias...
متن کاملApproximate all nearest neighbor search for high dimensional entropy estimation for image registration
Information theoretic criteria such as mutual information are often used as similarity measures for inter-modality image registration. For better performance, it is useful to consider vector-valued pixel features. However, this leads to the task of estimating entropy in medium to high dimensional spaces, for which standard histogram entropy estimator is not usable. We have therefore previously ...
متن کاملBreaking the Bandwidth Barrier: Geometrical Adaptive Entropy Estimation
Estimators of information theoretic measures such as entropy and mutual information are a basic workhorse for many downstream applications in modern data science. State of the art approaches have been either geometric (nearest neighbor (NN) based) or kernel based (with a globally chosen bandwidth). In this paper, we combine both these approaches to design new estimators of entropy and mutual in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Information processing in medical imaging : proceedings of the ... conference
دوره 20 شماره
صفحات -
تاریخ انتشار 2007